Spatial Transcriptomics Reveals Heterogeneity and
Microenvironmental Shifts in Breast Cancer Subtypes
and Metastatic Progression
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Introduction

Breast cancer is a clinically heterogeneous disease, where
the diverse tumour and microenvironmental landscape
determines cancer progression and prognosis. Despite
advances in and optimisation of cancer treatment, over 3,000
Australians die of breast cancer each yeari, highlighting the
need to further define the biological mechanisms that drive
tumour growth.

Cancers are supported by a complex network of surrounding
cells (stroma). Stromal cells, including cancer-associated
fibroblasts (CAFs), communicate with cancer cells to activate
signalling pathways that promote cancer growth, metastasis
and protect cancer against drug treatments?3. A better
understanding of this dynamic interaction between cancer
and stromal cells is thus critical for identifying novel drug
targets against this disease.

Traditional bulk tissue analyses fail to capture the complex
cellular and molecular interplay within tumours due to the
loss of spatial information during tumour dissociation. In this
study, we utilised the ground-breaking spatial transcriptomics
profiling to reveal previously hidden biological interactions
that will support unbiased discovery of clinically relevant
signatures.

Alms
We aim to investigate the spatial and cellular diversity across

primary and regional metastasis of breast cancer using
spatial transcriptomics.

Methods

Sample cohort: We applied the Human 6K Discovery Panel
on the CosMx Spatial Molecular Imager to our cohort of 28
breast cancer patients diagnosed with major molecular
subtypes, including luminal A (n=8), luminal B (n=5), luminal
A/B (n=4), triple-negative (n=8), HER2-enriched (n=2) and
triple-positive (n=1), along with 4 healthy women.

Construction of tissue microarrays (TMA): 8 TMAs were
generated from FFPE tumour blocks of these patients
capturing the invasive front and core of the tumour, as well
as patient-matched adjacent normal breast and lymph node

tissues and lymph node metastases.

Niche analysis: Niches were identified using the R package,
Scider. BuildNicheAssay function in R was utilised to
visualise the spatial distribution of niches across each tissue
core. Density contours were generated within each core,
centering on a niche of interest, to capture its spatial context
within the surrounding neighbourhood.

Results
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tSNE visualisation showed clear separation of epithelial cells
by tumour subtypes (left), and clustering of major epithelial

subpopulations (right).

CAF heterogeneity across molecular subtypes and
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Cell type proportion analysis revealed variation In
phenotypes and spatial distribution of CAF subpopulations
across molecular subtypes of Dbreast cancer (top).
Significantly higher abundance of CAFs in the tumour
regions of the breast and the lymph node was also observed
(bottom), Indicating their potential role In disease
progression.

Subtype-specific variations in immune cell
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Immune cell compositions differed between healthy and
tumour samples, with distinct shifts observed across cancer
subtypes, highlighting subtype-specific immmune landscapes.

Niche analysis reveals varying composition of
neighbouring cell populations
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Distinct niche patterns observed across tissue
locations In triple-negative breast cancer (TNBC)
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Density contours encompassing gradient distribution of CAF
s4-high niche (niche 19) identifled unique neighbouring
niches and cellular interactions. Niche 19 is most abundant in
contour 9 and least represented in contour 0. Differences In
relative co-occurrence of other niches in these contours (up
to 10) across the tumour core, invasive front and lymph node
metastasis of TNBC were observed (left). Niche composition
plot of the 10 density contours revealed enrichment of
various cell types (right), suggesting location-specific cellular
compositions and interactions that may be responsible for
disease progression.

Spatial architecture reveals unique cellular
communications between cell types
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Conclusion

By analysing the diverse molecular signatures and cellular
architecture, our in-depth spatial atlas will help gain deeper
iInsights into the Intercellular communication that
characterises major breast cancer subtypes and contributes
to disease progression.
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