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Deadliest cancer in Australia
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Current risk assessments are insufficient to provide an adequate treatment plan.
This is partly due to our limited knowledge of underlaying mechanisms and the
associated biomarkers that contribute to disease recurrence.
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Hypothesis and Objective:

Hypothesis: Tumour tissues with biomarker signatures that drive recurrence predispose some patients to disease relapse.
Objective: To develop a multi-modal data-driven Al approach for CRC prognostic prediction and identification of biomarkers associated with CRC relapse.
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Conclusion and Future Directions:
« We developed a deep-learning network to classify CRC tumour type, as well as a deep-learning network to predict the overall survival of CRC patients using whole slide

hematoxylin and eosin (H&E) images. The Graph neural network model for prognostic prediction using multiplex immunofluorescence images has made progress in

identifying cell types.
Future integration of these models will allow for the analysis of the saliencies of prediction outcomes, as well as the detection of biomarkers associated with the underlying
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