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Objective: To develop a multi-modal data-driven AI approach for CRC prognostic prediction and identification of biomarkers associated with CRC relapse.

Hypothesis and Objective:

Hypothesis: Tumour tissues with biomarker signatures that drive recurrence predispose some patients to disease relapse.

Develop a custom model for 
automated detection of 
tumour type based on whole 
slide images (WSIs).

Develop custom models for 
predicting overall survival and 
the time to relapse of CRC 
patients.

Integrate generated models to 
identify pathological 
biomarkers associated with 
disease recurrence. 
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Research gap:
Current risk assessments are insufficient to provide an adequate treatment plan. 
This is partly due to our limited knowledge of underlaying mechanisms and the 

associated biomarkers that contribute to disease recurrence.
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Conclusion and Future Directions:
• We developed a deep-learning network to classify CRC tumour type, as well as a deep-learning network to predict the overall survival of CRC patients using whole slide 

hematoxylin and eosin (H&E) images. The Graph neural network model for prognostic prediction using multiplex immunofluorescence images has made progress in 

identifying cell types.

• Future integration of these models will allow for the analysis of the saliencies of prediction outcomes, as well as the detection of biomarkers associated with the underlying 

mechanisms contributing to disease recurrence. With special thanks 
to the patients who 
generously donate 
their tissue 
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