Cardiac magnetic resonance left atrial ejection in atrial fibrillation and heart failure

Kenneth K Cho1,2,3,4, Louise Segan1,2,3,4, Peter M Kistler1,2,3,4,6, Chris Anthony2, Sarah Gutman2, Ben Costello2, James Hare2, Jeremy B William1,2,4,5, Rose F Crowley1,2,3,4, David Chieng1,2,3, Nicholas D'Elia1,2,4,5 Hariharan Sugumar1,2,3,4, Liang-Han Ling1,2,3, Aleksandr Voskoboinik1,2,3,4, Joseph B Morton3,6, Geoffrey Lee3,6, Alex J McLellan3,6, Sonia Azzopardi1, Annie Curtin1, Kevin Cheung2, Justin Lineham2, Matthew Morton2, Jessica Wang2, Michael W Lim3,6, Youlin Koh3,6, Michael Wong3,6, Jonathan M Kalman3,5,6, Sandeep Prabhu1,2,3,5

Background

The left atrium's conduit, reservoir and contractile functions are integral to overall cardiac performance.

The impact of catheter ablation (CA) compared to medical rate control (MRC) on contractile atrial function in AF HFrEF patients and its effect on exercise capacity has not been explored. In this study we use serial cardiac magnetic resonance (CMR), considered the gold standard for assessing cardiac chamber volume and function, to assess changes in bi-atrial size and function following the CA and MRC.

Objective

· We aimed to compare CMR changes in bi-atrial parameters and exercise capacity in AF HFrEF patients from CAMERA-MRI I and II multicentre studies which compared CA to MRC.

Method

- The CAMERA MRI and CAMERA MRI-II trials investigated LVEF recovery in AF HF patients based on cardiac magnetic resonance (CMR) late gadolinium enhancement (LGE) status.
- · In the current study, we report changes in bi-atrial size and function using serial CMR (see Figure 1), comparing patients who received CA versus MRC.
- Exercise capacity was assessed by serial 6MWT.
- The study was approved by the Alfred Hospital Human Ethics and Research Committee (Melbourne, Australia).

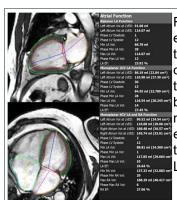


Figure 1: Calculation of LA ejection fraction involves manually tracing the atrium in 2 and 4 chamber orientation throughout the cardiac cycle to estimate biplane minimal and biplane maximal left atrial volumes. LA ejection fraction is calculated via the formula maximal LAV-minimal LAV)/maximal LAVx100%

Results

123 patients (age 60.7±11.1, 17 females, 82 CA, 41 MRC were included. Baseline atrial measurements and 6MWT distance were similar between the two groups.

CA patients had reverse remodelling of left and right atria across all structural and functional parameters (P<0.001), compared to no significant change in any parameters for MRC.

Delta LAEF better predicted delta LVEF (R=0.60, B coefficient=0.54, 95%CI 0.41-0.67, P<0.001) compared to SR (R=0.40, B coefficient=-10.97, 95%CI -15.50--6.44, P<0.001), and RAEF (R=0.02, B coefficient=0.01, 95%CI 0.14-0.17, P=0.856).

6MWT improved in 20 (48.8%) MRC compared to 63 (76.8%) CA patients (P=0.002). Univariate predictors of 6MWT change included LAEF (R=0.27, B coefficient=1.50, 95%CI 0.52-2.47, P=0.003) and LVEF (R=0.23, B coefficient 1.43, 95%CI 0.33-2.52, P=0.011), but not SR (R=0.16, B coefficient -28.05, 95%CI -58.47-2.37, P=0.070) nor RAEF (R=0.01, B coefficient=-0.07, 95% CI -1.07-0.93, P=0.892).

;)		Medical therapy N= 41 (%)		P value	Catheter Ablation N= 82 (%)		P value
')				(MRC TO			(CA T0 v
				v T1)			T1)
		Baseline	Follow-up		Baseline	Follow-up	
0	6 minute	423.5±123.5	442.4±112.4	0.079	422.7±111.1	484.89±91.1	<0.001*
	walk test						
	distance						
	LVEF	37.2±8.1	40.2±8.5	0.084	32.0±8.6	51.7±9.7	<0.001*
	Indexed	51.7±20.3	53.4±22.5	0.478	50.6±18.4	30.4±14.4	<0.001*
	minimum						
	left atrial						
	volume						
	Indexed	65.8±21.7	69.7±22.8	0.057	66.8±20.0	51.9±17.6	<0.001*
	maximum						
-	left atrial						
	volume						
	Biplane	22.2±7.9	23.3±10.9	0.600	25.5±11.0	43.1±10.5	<0.001*
	LA EF						
f	Indexed	42.9±14.8	40.5±17.0	0.249	43.7±19.0	27.5±11.9	<0.001*
	minimum						
	right atrial						
	volume						
	Indexed	57.1±18.4	56.8±19.1	0.886	62.3±22.1	47.5±17.8	<0.001*
	maximum						
	right atrial						
	volume						
	RA EF	27.9±8.2	30.3±10.8	0.172	31.0±11.0	42.8±9.7	<0.001*

Conclusion

Sinus rhythm restoration achieved through catheter ablation, along with reduction in bi-atrial size, leads to increases in bi-atrial EF compared to medical rate control.

LA EF predicts improvement in LVEF and exercise capacity suggesting restoration of atrial contractile function is a key feature of LV recovery in HFrEF.

1)The Baker Heart and Diabetes Research Institute, Melbourne 2)The Alfred Hospital, Melbourne 3) University of Melbourne, Melbourne University, Melbourne 6) Royal Melbourne Hospital, Melbourne the Alfred